Structure Reports

Online
ISSN 1600-5368

Burcu Arslan, ${ }^{\text {a }}$ Canan Kazak, ${ }^{\text {a }}$ Cumhur Kirilmis, ${ }^{\text {b }}$ Murat Koca ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Arts and Sciences Faculty, Fırat University, TR-23169, Elazığ, Turkey

Correspondence e-mail: nbarslan@ttnet.net.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=7.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Acetamidobenzonitrile

The title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$, was synthesized from 2-cyanoaniline and acetyl chloride in dry acetone. The crystal structure is stabilized by an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond contact, which forms a six-membered ring, and two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Hydroxybenzonitriles, aminobenzonitriles and their derivatives are important starting materials in the synthesis of some heterocyclic molecules (Radl et al., 2000; Arıcı et al., 2004). Heterocyclic molecules play an important role in pharmaceutical research and development as a result of their desirable physical and chemical properties, and the solid-phase synthetic methodology has been developed for many types of ring systems (Franzen, 2000; Wilson, 2001). We present here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) (Fig. 1) shows normal bond lengths and angles (Table 1). The $\mathrm{C} \equiv \mathrm{N}$ triple bond and $\mathrm{C}=\mathrm{O}$ double bond lengths are 1.138 (3) and 1.210 (2) \AA, respectively. The $\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 1$ and $\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$ torsion angles are 0.6 (4) and 142.9 (2) $)^{\circ}$, respectively.

The molecular structure of (I) is stabilized by a $\mathrm{C}--\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}--\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interaction. In the crystal structure, molecules are interlinked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form layers parallel to the $b c$ plane (Table 2 and Fig. 2).

Experimental

A solution of 2-cyanoaniline $(1.18 \mathrm{~g}, 10 \mathrm{mmol})$ in dry acetone $(150 \mathrm{ml})$ was cooled to 278 K . Acetyl chloride $(1.17 \mathrm{~g}, 15 \mathrm{mmol})$ was then added and the mixture was stirred for 8 h at room temperature. The reaction mixture was poured into water $(500 \mathrm{ml})$ and the product precipitated twice from water. The resulting solid was filtered off and recrystallized from acetone-water (3:2) (yield $1.48 \mathrm{~g}, 92.50 \%$).

Received 18 April 2005 Accepted 26 April 2005 Online 14 May 2005

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=160.17$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.8956(3) \AA$
$b=11.3796(14) \AA$
$c=18.3249(18) \AA$
$V=812.35(14) \AA^{3}$
$Z=4$
$D_{x}=1.310 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 1591 reflections
$\theta=1.8-27.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.60 \times 0.36 \times 0.10 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer	$R_{\text {int }}=0.031$
ω scans	$\theta_{\max }=26.0^{\circ}$
1591 measured reflections	$h=-4 \rightarrow 4$
977 independent reflections	$k=0 \rightarrow 14$
766 reflections with $I>2 \sigma(I)$	$l=0 \rightarrow 22$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0515 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.12 \mathrm{e}^{-3}$
$S=0.92$
977 reflections
132 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A molecular packing diagram of (I), viewed along the a axis. Dashed lines indicate intermolecular hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{~N} 1^{\text {i }}$	0.85 (2)	2.26 (2)	3.081 (3)	163 (2)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ii }}$	0.98 (2)	2.47 (2)	3.270 (3)	139 (2)
C5-H5 . ${ }^{\text {O1 }}$	0.97 (2)	2.49 (3)	2.914 (3)	106 (2)

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.

The methyl H atoms were positioned geometrically and refined isotropically using a riding model $\left[\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $U_{\text {iso }}=$ $\left.1.5 U_{\text {eq }}(\mathrm{C})\right]$. The remaining H atoms were found in a difference Fourier map and refined isotropically. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are in the range 0.85 (2)-0.98 (2) \AA. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Arıcı, C., Ülkü, D., Kirilmiş, C., Koca, M. \& Ahmedzade, M. (2004). Acta Cryst. E60, o1211-o1212.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Franzen, R. G. (2000). J. Comb. Chem. 2, 195-214.
Radl, S., Hezky, P., Konvicka, P \& Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Wilson, L. J. (2001). Org. Lett. 3, 585-588.

